强国社区>> 强国论坛
王东镇1 发表于  2017-09-14 08:09:00 4940字 ( 4/259)

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?(原创首发)

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?

2017.9.14

据说恒星表面的熊熊烈焰是由“氢”元素向“氦”元素的核聚变产生的,可据说氢气的燃点是摄氏570度,“氦”的燃点不详,可能超不过摄氏六千度,在摄氏六千度的高温下都不能存在,如何产生核聚变与摄氏六千度的高温?

某些化学元素的裂变临界温度可能超过摄氏六千度,可以在恒星表面相对低温的区域形成,通过恒星表面的熊熊烈焰进一步聚变为更为高端的化学元素,但不会是“氢”同位素。所以,恒星不可能是“氢”气球。

聚变反应是正负电荷聚变为偏电荷光子,偏电荷光子聚变为化学元素的过程,其中偏电荷光子聚变为化学元素的过程是吸热反应,必定发生降温现象,导致热核聚变的相对停滞,甚至局部终止,这也是星球层次现象产生的原因。所以,不要把恒星内部温度想象的比表面温度还高。

任何偏电荷光子聚变为化学元素的过程都离不开正反“氢”、“氦”同位素的形成过程,离不开相对低端元素向相对高端元素的连续反应过程,所以恒星内部未必没有相对低端的化学元素。

宇宙射线的存在和构成告诉我们:“氢”、“氦”同位素可能在太空环境形成,就可能在优于太空的环境形成;正反“氢”、“氦”同位素相互排斥才有宇宙射线的形成(宇宙射线的主要成分就是正反“氢”、“氦”同位素)和正反物质的区分;“氢”、“氦”同位素是构成所有相对高端元素的初始元素。

“氢”、“氦”同位素不可能通过恒星表面摄氏六千度的高温,但是可能在恒星表面相对低温区域聚变出相对耐高温的化学元素,通过恒星表面的熊熊烈焰,成为恒星的物质成分。恒星内部的相对低温区域也会有正反“氢”、“氦”同位素形成,与恒星性质相同的部分继续其后的聚变,不同的部分转化为宇宙射线,或再次裂变重组。

温度是由偏电荷光子的密度决定的,而一定密度的偏电荷光子可能发生聚变反应,产生降温效果。所以,高温也有极限。超过极限就不是聚变反应,可能导致星球物质裂变的连锁反应,星球,甚至星系的毁灭。

 

缺只角 发表于  2017-09-14 09:01:55 36字 ( 0/37)

反过来想。客观存在比分析有用、太阳就是这样存在。而不是客观要服从啥理论。

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?

2017.9.14

据说恒星表面的熊熊烈焰是由“氢”元素向“氦”元素的核聚变产生的,可据说氢气的燃点是摄氏570度,“氦”的燃点不详,可能超不过摄氏六千度,在摄氏六千度的高温下都不能存在,如何产生核聚变与摄氏六千度的高温?

某些化学元素的裂变临界温度可能超过摄氏六千度,可以在恒星表面相对低温的区域形成,通过恒星表面的熊熊烈焰进一步聚变为更为高端的化学元素,但不会是“氢”同位素。所以,恒星不可能是“氢”气球。

聚变反应是正负电荷聚变为偏电荷光子,偏电荷光子聚变为化学元素的过程,其中偏电荷光子聚变为化学元素的过程是吸热反应,必定发生降温现象,导致热核聚变的相对停滞,甚至局部终止,这也是星球层次现象产生的原因。所以,不要把恒星内部温度想象的比表面温度还高。

任何偏电荷光子聚变为化学元素的过程都离不开正反“氢”、“氦”同位素的形成过程,离不开相对低端元素向相对高端元素的连续反应过程,所以恒星内部未必没有相对低端的化学元素。

宇宙射线的存在和构成告诉我们:“氢”、“氦”同位素可能在太空环境形成,就可能在优于太空的环境形成;正反“氢”、“氦”同位素相互排斥才有宇宙射线的形成(宇宙射线的主要成分就是正反“氢”、“氦”同位素)和正反物质的区分;“氢”、“氦”同位素是构成所有相对高端元素的初始元素。

“氢”、“氦”同位素不可能通过恒星表面摄氏六千度的高温,但是可能在恒星表面相对低温区域聚变出相对耐高温的化学元素,通过恒星表面的熊熊烈焰,成为恒星的物质成分。恒星内部的相对低温区域也会有正反“氢”、“氦”同位素形成,与恒星性质相同的部分继续其后的聚变,不同的部分转化为宇宙射线,或再次裂变重组。

温度是由偏电荷光子的密度决定的,而一定密度的偏电荷光子可能发生聚变反应,产生降温效果。所以,高温也有极限。超过极限就不是聚变反应,可能导致星球物质裂变的连锁反应,星球,甚至星系的毁灭。

 

战野軍 发表于  2017-09-14 08:42:42 38字 ( 0/27)

国外监测,天宫一号每天下降一百多米,可能会造成地面载难,国内为啥不回应辟谣?

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?

2017.9.14

据说恒星表面的熊熊烈焰是由“氢”元素向“氦”元素的核聚变产生的,可据说氢气的燃点是摄氏570度,“氦”的燃点不详,可能超不过摄氏六千度,在摄氏六千度的高温下都不能存在,如何产生核聚变与摄氏六千度的高温?

某些化学元素的裂变临界温度可能超过摄氏六千度,可以在恒星表面相对低温的区域形成,通过恒星表面的熊熊烈焰进一步聚变为更为高端的化学元素,但不会是“氢”同位素。所以,恒星不可能是“氢”气球。

聚变反应是正负电荷聚变为偏电荷光子,偏电荷光子聚变为化学元素的过程,其中偏电荷光子聚变为化学元素的过程是吸热反应,必定发生降温现象,导致热核聚变的相对停滞,甚至局部终止,这也是星球层次现象产生的原因。所以,不要把恒星内部温度想象的比表面温度还高。

任何偏电荷光子聚变为化学元素的过程都离不开正反“氢”、“氦”同位素的形成过程,离不开相对低端元素向相对高端元素的连续反应过程,所以恒星内部未必没有相对低端的化学元素。

宇宙射线的存在和构成告诉我们:“氢”、“氦”同位素可能在太空环境形成,就可能在优于太空的环境形成;正反“氢”、“氦”同位素相互排斥才有宇宙射线的形成(宇宙射线的主要成分就是正反“氢”、“氦”同位素)和正反物质的区分;“氢”、“氦”同位素是构成所有相对高端元素的初始元素。

“氢”、“氦”同位素不可能通过恒星表面摄氏六千度的高温,但是可能在恒星表面相对低温区域聚变出相对耐高温的化学元素,通过恒星表面的熊熊烈焰,成为恒星的物质成分。恒星内部的相对低温区域也会有正反“氢”、“氦”同位素形成,与恒星性质相同的部分继续其后的聚变,不同的部分转化为宇宙射线,或再次裂变重组。

温度是由偏电荷光子的密度决定的,而一定密度的偏电荷光子可能发生聚变反应,产生降温效果。所以,高温也有极限。超过极限就不是聚变反应,可能导致星球物质裂变的连锁反应,星球,甚至星系的毁灭。

 

牛马风 发表于  2017-09-14 08:42:10 6字 ( 0/31)

太阳无化学。

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?

2017.9.14

据说恒星表面的熊熊烈焰是由“氢”元素向“氦”元素的核聚变产生的,可据说氢气的燃点是摄氏570度,“氦”的燃点不详,可能超不过摄氏六千度,在摄氏六千度的高温下都不能存在,如何产生核聚变与摄氏六千度的高温?

某些化学元素的裂变临界温度可能超过摄氏六千度,可以在恒星表面相对低温的区域形成,通过恒星表面的熊熊烈焰进一步聚变为更为高端的化学元素,但不会是“氢”同位素。所以,恒星不可能是“氢”气球。

聚变反应是正负电荷聚变为偏电荷光子,偏电荷光子聚变为化学元素的过程,其中偏电荷光子聚变为化学元素的过程是吸热反应,必定发生降温现象,导致热核聚变的相对停滞,甚至局部终止,这也是星球层次现象产生的原因。所以,不要把恒星内部温度想象的比表面温度还高。

任何偏电荷光子聚变为化学元素的过程都离不开正反“氢”、“氦”同位素的形成过程,离不开相对低端元素向相对高端元素的连续反应过程,所以恒星内部未必没有相对低端的化学元素。

宇宙射线的存在和构成告诉我们:“氢”、“氦”同位素可能在太空环境形成,就可能在优于太空的环境形成;正反“氢”、“氦”同位素相互排斥才有宇宙射线的形成(宇宙射线的主要成分就是正反“氢”、“氦”同位素)和正反物质的区分;“氢”、“氦”同位素是构成所有相对高端元素的初始元素。

“氢”、“氦”同位素不可能通过恒星表面摄氏六千度的高温,但是可能在恒星表面相对低温区域聚变出相对耐高温的化学元素,通过恒星表面的熊熊烈焰,成为恒星的物质成分。恒星内部的相对低温区域也会有正反“氢”、“氦”同位素形成,与恒星性质相同的部分继续其后的聚变,不同的部分转化为宇宙射线,或再次裂变重组。

温度是由偏电荷光子的密度决定的,而一定密度的偏电荷光子可能发生聚变反应,产生降温效果。所以,高温也有极限。超过极限就不是聚变反应,可能导致星球物质裂变的连锁反应,星球,甚至星系的毁灭。

 

牛马风 发表于  2017-09-14 08:39:29 6字 ( 0/37)

无氧无燃点。

3919.“氢”、“氦”同位素可以在摄氏六千度存在吗?

2017.9.14

据说恒星表面的熊熊烈焰是由“氢”元素向“氦”元素的核聚变产生的,可据说氢气的燃点是摄氏570度,“氦”的燃点不详,可能超不过摄氏六千度,在摄氏六千度的高温下都不能存在,如何产生核聚变与摄氏六千度的高温?

某些化学元素的裂变临界温度可能超过摄氏六千度,可以在恒星表面相对低温的区域形成,通过恒星表面的熊熊烈焰进一步聚变为更为高端的化学元素,但不会是“氢”同位素。所以,恒星不可能是“氢”气球。

聚变反应是正负电荷聚变为偏电荷光子,偏电荷光子聚变为化学元素的过程,其中偏电荷光子聚变为化学元素的过程是吸热反应,必定发生降温现象,导致热核聚变的相对停滞,甚至局部终止,这也是星球层次现象产生的原因。所以,不要把恒星内部温度想象的比表面温度还高。

任何偏电荷光子聚变为化学元素的过程都离不开正反“氢”、“氦”同位素的形成过程,离不开相对低端元素向相对高端元素的连续反应过程,所以恒星内部未必没有相对低端的化学元素。

宇宙射线的存在和构成告诉我们:“氢”、“氦”同位素可能在太空环境形成,就可能在优于太空的环境形成;正反“氢”、“氦”同位素相互排斥才有宇宙射线的形成(宇宙射线的主要成分就是正反“氢”、“氦”同位素)和正反物质的区分;“氢”、“氦”同位素是构成所有相对高端元素的初始元素。

“氢”、“氦”同位素不可能通过恒星表面摄氏六千度的高温,但是可能在恒星表面相对低温区域聚变出相对耐高温的化学元素,通过恒星表面的熊熊烈焰,成为恒星的物质成分。恒星内部的相对低温区域也会有正反“氢”、“氦”同位素形成,与恒星性质相同的部分继续其后的聚变,不同的部分转化为宇宙射线,或再次裂变重组。

温度是由偏电荷光子的密度决定的,而一定密度的偏电荷光子可能发生聚变反应,产生降温效果。所以,高温也有极限。超过极限就不是聚变反应,可能导致星球物质裂变的连锁反应,星球,甚至星系的毁灭。

 

1 页号:1/1 到第 页 
  查看完整版本:相关论坛内容